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The mammalian neocortex is a highly complex and nonlinear dynamic system. One of its most prominent
features is an omnipresent spontaneous neuronal activity. Here the possible functional role of this global
background for cognitive flexibility is studied in a prototypic mean-field model area. It is demonstrated that the
level of global background current efficiently controls the stimulus-response threshold and the stability and
properties of short-term memory states. Moreover, it can dynamically gate arbitrary cortical subnetworks, when
applied to parts of the area as a weak bias signal. These results suggest a central functional role of the level of
background activation: the dynamic functional tuning of neocortical circuits.
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I. INTRODUCTION

The neocortex represents the most prominent brain struc-
ture of humans and higher mammals. Consisting of about
1011 densely interconnected neurons, it represents a highly
complex and nonlinear recurrent system. The cortex can be
divided into different cortical areas which share a remarkably
uniform anatomical structure �1�, but are involved in very
different functions ranging from basic feature representation
to complex associations and mental manipulations.

A general feature of the neocortex present in all cortical
areas is a spontaneous background neuronal activity which in
total strength usually dominates by far the sparse signal-
related activations. During typical cortical operation, about
99% of the neurons are spontaneously active and fire action
potentials with about 2–3 Hz, whereas only about 1% of the
neurons process signals and fire with some tens of Hz �2–4�.
Consequently, the global, noninformative background activ-
ity is about tenfold bigger—and consumes tenfold more
metabolic energy—than the patterned information-carrying
neuronal activity. Likewise, nonspecific input current to each
neuron arising from the background synaptic activity is
much bigger than specific �information-carrying� synaptic
current.

Throughout the last years, a number of models based on
realistic networks of spiking neurons �5–7� have been ana-
lyzed to explore how, in the visual domain, neural correlates
of attention �8–10�, context-dependent working memory
�11–15�, visuomotor association �16�, and decision making
�17� might arise from recurrent neuronal dynamics. For this
class of networks, efficient mean-field formulations have
been developed �5,18–21�. Many of these formulations have
been found to behave rather similar to each other in terms of
stationary spike rates and current-frequency relationships
�22�.

The observed dominance of the global background activ-
ity despite its high metabolic demand suggests that sponta-
neous activity might play a crucial role for the functional
performance of neocortex. In fact, various functional roles
for spontaneous activity have been proposed, such as linear-
izing input-output relationships �2,23�, speeding up network
responses to transient stimuli �23–25�, and varying the sta-
bility of persistently active memory states �12�. More re-

cently, the level of spontaneous activity has also been shown
to be able to switch an integrate-and-fire neuronal network
back and forth between different dynamic states �26�.

Here, we study systematically how the level of the global
background spontaneous activity affects functional proper-
ties of a mean-field model cortical area that are relevant in
the context of visual cognition. The model is chosen to pro-
totypically represent the most relevant features of a wide
class of realistic mean-field descriptions �cf. Refs. �22,27�
and References therein�. At the same time, it is kept math-
ematically simple to allow for the extensive derivation of
analytical results.

When local excitation is strong and is balanced by lateral
inhibition, we find that the background current drastically
affects the system’s attractor landscape. When increased
from below, the global background current first lowers the
network’s amplification threshold for small stimuli. As will
be defined in more detail in Sec. III C, the amplification
threshold is the minimum strength of a stimulus required to
drive the stimulated pool’s activity into the saturating part of
its gain function. Then, a multistability regime appears,
where patterned short-term memory states, defined by persis-
tently active pools, co-exist with the state of constant activa-
tion across pools. A key finding is that the maximum number
of co-existing persistently active neuronal pools systemati-
cally increases with the background level. Finally, the con-
stant dc state becomes unstable leading to spontaneous for-
mation of memory states, driven by fluctuations. When the
level of global background current is varied selectively for a
subnetwork, the functional properties of that subnetwork are
changed selectively as well. This is demonstrated by a set of
exemplifying simulations, where selective attention, storage
in working memory, and the level of vulnerability of activity
patterns can be gated by the level of additive biasing current.
These findings shed light on the computational mechanisms
underlying the recently proposed biased competition and co-
operation framework of visual cognitive processing �8,10�.

The presented results suggest a central functional role of
the global background activity. By varying its level, the func-
tional properties of a cortical area can be dynamically tuned:
In the range of hundred milliseconds, its sensitivity to repre-
sent and/or its ability to store stimuli by means of persistent
activity can be adjusted. This principle might also underly
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the control of alertness by global neuromodulatory systems
like the dopaminergic system.

II. MODEL

We consider a model cortical area that consists of excita-
tory and inhibitory neurons. Excitatory neurons of the model
area are grouped to N pools that follow a Wilson-Cowan-
type dynamics. They drive one common linear inhibitory
pool, which in turn spreads inhibition to itself and to all
excitatory pools. The excitatory and inhibitory pools are
driven by common global background synaptic currents I0
and II, respectively. They are assumed to arise from sponta-
neous global background activity of other parts of the brain,
which are not explicitly modeled in this work, because self-
consistent stability of a spontaneous active state with differ-
ent mean rates has been demonstrated earlier �5�. In addition,
each excitatory pool k=1, . . . ,N can receive a small specific
stimulating current Is,k from presynaptic neuron assemblies.
The set of differential equations for the excitatory and inhibi-
tory ensemble-averaged spike rates, �k and �I, are given by

�
d�k

dt
= − �k + g�I0 + Is,k + w+�k + �

l�k

N

w−�l − wEI�I� , �1�

�I
d�I

dt
= − �I + gI�II + �

l=1

N

wIE�l − wII�I� , �2�

where w+�0 denotes the strong self-excitation of each exci-
tatory pool, and w−�0 the weaker mean lateral excitation
strength between pairs of excitatory pools. The lateral exci-
tation strength might actually be structured and store com-
plex patterns as attractors of the network dynamics �28�, but
for simplicity we assume a constant value w− here giving rise
to relatively simple attractors.

All excitatory pools drive a common inhibitory pool with
weights wIE�0, which spreads inhibition back to itself and
all excitatory pools with weights −wII�0 and −wEI�0, re-
spectively. The inhibitory pool is kept linear which might be
a reasonable first order approximation of observed behavior
�29�. The nonlinear activation function g�I� of excitatory
pools is assumed differentiable and to consist of an acceler-
ating and a saturating part. For quantitative analysis and
simulations, we adopt the easy-to-handle expression g�I�
=0, I�0; =1/2I2, 0� I�1; =�I−3/4, I�1 �27�, which rea-
sonably well approximates the fast acceleration and slow
saturation of current-frequency relationships recently derived
for various realistic network models of spiking neurons �22�.
It is scaled to have unity maximum slope for convenience.
Note, however, that all results of the current study hold for
arbitrary functions with sigmoid characteristics. Finally, gI
denotes the gain of the linear inhibitory pool.

Under the adiabatic approximation of the inhibitory popu-
lation, which is known to respond fast in the cortex �29�,
Eqs. �1� and �2� can be simplified to

�
d�k

dt
= − �k + g�Ib + Is,k + WS�k + WL/N�

l=1

N

�l�,

k = 1, . . . ,N , �3�

where the net self-excitation WSªw+−w−�0, the net lateral
excitation WLªN�w−−WI�, and the effective global back-
ground current Ibª I0−WIII /wIE have been introduced. The
effective inhibition is given by WIªgIwEIwIE / �1+gIwII�.
The equivalent system Eq. �3� is fully characterized by WS,
WL, and Ib.

III. RESULTS

A. Stability of dc state

Ultimately we wish to understand how small perturba-
tions Is on top of a large global background current Ib are
amplified and represented by the model area, because this is
the regime in which neocortex is found to operate �4�. For
this we first analyze the stability of the state of constant
activity across pools, referred to as “dc state,” �
= ��1 , . . . ,�N�= :�FP ·1, under constant background input. 1
= �1, . . . ,1�T is the N-dimensional dc vector, the superscript T
denotes the transpose of a vector or matrix. The fixed point
�FP� condition of Eq. �3� for the dc state reads �FP=g�Ib
+ �WS+WL��FP�. For WS+WL�1/max�g��I��=1 there exists
a regime of bistability for the global dc state, depending on
the level of the background current, as illustrated in Fig.
1�a�: at the level of Ib1 there is a single low stable FP, Ib2
implies bistability of a low and high dc state �separated by an
unstable FP�, and for Ib3 only the high state remains. In the
bistability regime, a specific input current given to a subset
of pools can cause a flip of all pools from the low to the high
state, caused by the strong lateral excitation WL�1−WS.
This effect might be a neural correlate of mental associa-
tions, where the neural representation of an unconditioned
stimulus—giving rise to specific input—autonomously
evokes co-activation of neurons that represent associated
stimuli—the global flip �27�. It is worth noting that the net-
work’s ability to autonomously co-activate pools associated
with each other can be dynamically switched on or off by
varying the global background current Ib, for example be-
tween the values Ib1 and Ib2 in Fig. 1�a�.

For the regime WS+WL�1, a single FP of the dc state
exists, which deserves further stability analysis. We hence-
forth consider the representative special case of a balanced
network, defined by an equal absolute strength of net self-
excitation and the effective lateral inhibition, WL=−WS. Re-
sults remain qualitatively similar when we leave this point,
however, as long we stay within the regime specified above.
A balanced network is completely characterized by the self-
excitation WS and the global background current Ib. A small
perturbation vector 	 from the FP state, �=�FP1+	, evolves
according to

�
d	

dt
= − 
	 + ��1T	�1, 
 = 1 − g��Ib�WS, � =

g��Ib�WL

N
.

�4�

In the regime considered, ��0 holds and the second term on
the right-hand side of Eq. �4� acts as to suppress the growth
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of the dc mode �Fig. 1�b�, right�. Hence for 
�0 the dc state
is a stable fixed point �Fig. 1�b�, left�. However, when 

changes sign, the dc state becomes unstable, and any mode
orthogonal to the suppressed dc mode, i.e., any mode with
zero mean �along dashed line or hyperplane in Fig. 1�b�,

right� grows. Zero-mean modes represent structured patterns
of neuronal activity across pools. Hence, for 
�0, small
fluctuations are spontaneously amplified by the network to
form structured activity patterns. We refer to the regime 

�0 as “spontaneous pattern formation” regime. From the
phase boundary condition g��I�WS=1 and for the example of
the gain function g assumed here we obtain the phase bound-
ary current for spontaneous pattern formation, Isp, for WS
�1 as Isp=1/WS, 0� I�1; Isp= �WS

2+3� /4, I�1. The phase
boundary for spontaneous pattern formation, Isp�WS�, is plot-
ted in the summarizing phase diagram Fig. 4 �thick solid�.

Figure 2 summarizes the results of a numeric simulation
of Eqs. �3� with N=20 pools, testing how the stability of the
dc state depends on the level of the background current �cf.
Sec. III A�. For this, the constant background current is
slowly increased from zero. When turning up Ib, first small
fluctuations are increasingly amplified, but the dc state re-
mains stable. Above the critical value Isp, the area enters the
spontaneous pattern formation regime: subsets of pools are
spontaneously and discontinuously activated to a high state,
whereas the remaining pools are slightly deactivated such as
to preserve the mean activity across pools. When Ib further
increases, the fraction of activated pools rises, as indicated
by Eq. �6�, whereas the levels of activity do not change
much. Above the second critical background current, the dc
state re-stabilizes, but this time at the fully activated level.

The equation for the decay parameter 
 highlights the
functional symmetry between a synaptic efficacy WS and the
background current Ib. Besides WS also Ib can cause the sys-
tem to enter or leave the spontaneous pattern formation re-
gime. There is evidence from functional imaging studies that
cortical activation without stimulation is a likely neural cor-
relate of imagery and spontaneous thoughts �30�, and that
imagery and perception draw on roughly the same neural
machinery �31�. In light of this, spontaneous and reversible
activation of neuronal assemblies are likely to be related with

FIG. 1. Schematic illustrations to graphical solutions concerning
�a� collective bistability, �b� stability of the state of constant activa-
tion, �c� multistability of memory states, and �d� stimulus amplifi-
cation thresholds. See text for details.

FIG. 2. Gray-level coded activities of a model area with N=20
pools �vertical axis� driven by a constant background current Ib

only. During the simulation, Ib is continuously increased from 0 to
2 over 10 000 time steps �horizontal axis�. To break symmetries,
weak white Gaussian noise ��=0.01� was superimposed onto the
background current. Other parameters: WS=−WL=1.25, �=5.
When Ib exceeds 0.8=1/WS, structured activity patterns spontane-
ously emerge and die out again for higher values.
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the spontaneous pop-up of memories and mental images in
the brain, a process which might underly the emergence of
creative thoughts. Here we demonstrate that this property of
a model cortical network can be dynamically enabled or sup-
pressed by adjusting the global background synaptic current
driving it.

B. Multistability of memory states

Stable states of structured persistent neuronal activity in
the absence of structured stimulation are considered a neural
substrate of working memory or short-term memory �32,33�.
In analogy, we identify a persistently active pool that is not
driven by specific input with a short-term memory stored in
the considered network model. We next analyze the existence
and multistability properties of structured activity states, re-
ferred to as memory states, which contain a subset of persis-
tently active pools. The general fixed point conditions Eq. �3�
for a balanced network without the restriction to the dc an-
satz are given by �k=g�Ib+WS��k− �̄��, where �̄ denotes the
mean activity across pools. The FP equations are separable in
k, i.e., the same FP equation holds for all pools. If WS
�1/max�g��=1, there is one stable FP solution, hence only
the dc state is stable. For WS�1, there exists a regime of
bistability: in this regime, each pool can be in one of two
possible stable states: an active one with spike rate �a or a
silent one with spike rate �s.

We now consider a state where M pools are active and
N−M pools are silent, and analyze under which conditions
that ansatz solves the resulting FP equations,

�a = g�Ia� = g�Ib + WS�1 − x���a − �s�� ,

�s = g�Is� = g�Ib − WSx��a − �s�� . �5�

In Eqs. �5�, x=M /N is the fraction of persistently active
pools. Figure 1�c� illustrates the graphical solution of the
fixed point equations: The ansatz solves Eqs. �5�, if there
exists a linear function with slope 1/WS which �i� intersects
the function g�I� at least two times, �ii� such that the fraction
of distances of the intersection currents Is and Ia from the
background current Ib is given by x / �1−x�. The resulting FP
solutions can be shown to be stable. We now consider the
leftmost linear function with the mentioned properties,
namely the one that forms the tangential of the saturating
part of g �dashed line in Fig. 1�c��. For the gain function
specified above, its intersection currents are given by Ia,0
= �WS

2+3� /4, Is,0= 	1− �1− �3−WS
2�WS /2�1/2
 /WS. In order to

obtain stable FP states with at least one pool persistently
active, i.e., x=1/N, the background current �besides Ib
� Ia,0� must fulfill Ib� Iwm= Is,0+ �Ia,0− Is,0� /N. Hence we ob-
serve a phase boundary Iwm�WS� for the existence of stable
working memory states, which is plotted in Fig. 4 �thick
dashed�. By shifting the background current above or below
this boundary, the area’s ability to maintain working memo-
ries by means of persistent neuronal activity can be dynami-
cally switched on or off. Further, for Ib� Iwm, the maximum
fraction of simultaneously active pools is given by

xmax = �Ib − Is,0�/�Ia,0 − Is,0� , �6�

digitized to steps of 1 /N.
Iwm and Isp outline a regime of multistability in which

both the dc state and patterned working memory states co-
exist. In this regime, the brain area can be brought from a
state of constant activation into a patterned working memory
state by means of transient external stimulation. Therefore
this regime is referred to as induced pattern formation regime
or working memory regime. This result agrees well with the
findings on phase boundaries for multistability found in simi-
lar settings �26,34�.

It is worth noting, however, that, in addition to the ability
of the model area to maintain persistently active memory
states, also the maximum number of co-existing persistently
active pools �i.e., the number of co-existing memories� can
be dynamically adjusted by the global background current Ib.
The maximum number of co-existing memories, in turn, can
be related to different functions being carried out by the area.
For example, when only one memory can exist, we face dis-
tractible working memory �found in inferotemporal cortex�,
which always keeps the most recent input. When several
memories can co-exist, we face a network that shows non-
distractible working memory �found in prefrontal cortex�,
which can accumulate memories across time �“folding in
time”�. Finally, an area that can keep several memories
stimulated in the near past, can represent the recent history of
a time series of inputs, and can serve as to represent short-
term histories of trajectories.

C. Amplification of small specific stimuli

Next it is analyzed how the network responds to a small
specific stimulation current Is. We consider the biologically
realistic regime Is Ib in which the specific input represents
a small perturbation which rides on top of the big global and
constant background current. In order to represent such a
small stimulus by macroscopically detectable neuronal activ-
ity, the network must be able to strongly and selectively am-
plify this small input. Here we provide an approximate ana-
lytical solution for the activation threshold of the network for
the limit of large number of pools, for WS�1 and for Ib
below the spontaneous pattern formation regime. For the
sake of brevity, we consider the special case of only one
pool, say, pool number 1, being stimulated when the rest of
the network rests in the dc state. Again, all pools except the
first one are described by the same equation and, according
to our assumption rest in the same, inactive state, �2= ¯

=�N¬�0. For large N, the fixed point equations can be ap-
proximated by

�1 � g�I1� = g�Ib + WS��1 − �0� + Is� , �7�

�0 � g�Ib� = �FP. �8�

Figure 1�d� illustrates the graphical solution of Eqs. �7� and
�8�. Whereas the unstimulated pools remain at the spontane-
ous activity level �FP, the FP activity of the stimulated pool
results from an intersection of the gain function, shifted to
the left by Is, with the line y�I�=g�Ib�+ �I− Ib� /WS �straight
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line in Fig. 1�d��. When the stimulus current is steadily in-
creased from zero, �1 increases continuously from �FP, but
the pool stays within the lower fixed point, i.e., within the
accelerating part of the gain function. However, for a critical
threshold current Ith, the lower FP for pool 1 vanishes, and its
activity discontinuously jumps to a high level in the saturat-
ing part of the gain function. This happens when the shifted
gain function becomes tangential to the linear function y�I�
�illustrated by the dashed curve in Fig. 1�d��. We define Ith as
the activation threshold of the network for one stimulus.
Please note that only if the pool arrives at the upper FP can it
reach the persistently active state �a after termination of the
stimulus �cf. Fig. 1�d��. Hence superthreshold stimulation is
a necessary condition for subsequent storage in working
memory.

For the gain function considered here, the threshold cur-
rent for activation is given by Ith=WS�1/WS− Ib�2 /WS , Ib

�1/WS , WS�1. This demonstrates that also the network’s
activation threshold �and, related to it, the memory storage
threshold� can be dynamically adjusted by the global back-
ground current. The larger Ib, the smaller stimuli are ampli-
fied and represented by the network. When Ib approaches
1/WS from below, the threshold current becomes infinitely
small, and we arrive at the spontaneous pattern formation
regime. This is also illustrated in Fig. 4, which displays
phase boundaries in terms of Ib and WS where the amplifica-

tion threshold becomes Ith=0.15, 0.1, 0.05, 0.025, and
0.0025 �thick dash-dotted lines�.

The dynamic adjustment of stimulus thresholds by the
background current can serve as an important neuronal
mechanism for dynamically varying the sensitivity of brain
systems. As such, it might form a neuronal correlate for the
control of alertness and arousal.

Figure 3 shows how the same network as used in Fig. 2
responds to two small specific stimuli and how this response
depends on the global background current. For this, pool 8 of
the network received a stimulus Is,1=0.05 during time steps
200 – 800, and pool 12 received Is,2=0.05 during time steps
1200 – 1800. In the plots of Fig. 3, pool 8 activity is shown
as a solid line, pool 12 activity as a dashed line, and the
average activity of the remaining 18 pools as a dotted line.
For the top traces, calculated for Ib=0.5, these inputs are
both subthreshold, resulting in a small activation �Fig. 3�a��.
When the background current �and only the background cur-
rent� is changed to 0.55, the same inputs are now super-
threshold, resulting in an accelerating amplification and a
resulting strong activation �Fig. 3�b��. When Ib is further in-
creased to 0.6, the first stimulus evokes persistent activity
beyond stimulation, i.e., stimulus 1 is stored in short term
memory �Fig. 3�c�, solid line�. However, the activation of the
other pool �Fig. 3�c�, dashed line� erases this memory, be-
cause for the background current chosen, only one memory
at maximum can exist �Nxmax=1, cf. Eq. �6��: we face a
distractible working memory. Finally, for even higher back-
ground current, both stimuli are simultaneously stored in per-
sistent activity �nondistractible working memory�.

Figure 4 summarizes the theoretical �thick lines, described
before� and simulated phase boundaries for spontaneous pat-
tern formation, induced pattern formation and stimulus am-
plification. In the simulations, the induced pattern formation
boundary �thin solid line� was determined by the condition,

FIG. 3. Responses over time of two stimulated pools �8 and 12,
chosen arbitrarily for convenience� and the background activity
�dotted line� in a model area for different background currents. Pool
8 stimulus: Is=0.05 in t� �200,800� �response: solid line�. Pool 12
stimulus: Is=0.05 in t� �1200,1800� �response: dashed line�. �a�
Ib=0.50, no stimulus representation, �b� Ib=0.55, stimulus represen-
tation, no persistent activity, �c� Ib=0.60, persistent activity, only
one memory state allowed �distractible working memory� and �d�,
Ib=0.65, working memory, more than one memory state co-exist.
Other parameters are N=20, WS=−WL=1.25.

FIG. 4. Phase regimes for a balanced network. Theory: thick
solid, Isp�WS� spontaneous pattern formation boundary; thick
dashed, Iwm�WS�, induced pattern formation �working memory�
boundary; thick dash-dotted, stimulus amplification boundaries for
Ith=0.15, 0.10, 0.05, 0.025, 0.0025; thin solid line, simulation re-
sult for Iwm, determined by the condition �a��FP+0.03. Contour
plot: Simulation results for stimulus amplification thresholds �same
values as in theory�, determined by �1��FP+0.3.
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that persistent activity after stimulation was 0.03 above the
background activation. The stimulus amplification thresholds
�contour plot, thin lines� were obtained by the condition, that
the stimulus response was at least 0.3 above the background
activation. These thresholds are arbitrary values, but the re-
sults near the analytical curves are largely independent of the
exact choice. A comparison of the result shows a very good
agreement of the analytical and simulated phase boundaries.

D. Functional gating by subnetwork bias

In light of the dramatic influence of the global back-
ground current on a complete network’s mode of operation,
we next tested whether changing the background current of a
subnetwork could selectively change the functional proper-
ties of that subnetwork. For this, a model area was stimulated
by a small set of specific stimuli, Is,k, while a subnetwork of
the area received a weak uniform bias current Ibias on top of
the global background current Ib. Both the stimuli and the
bias signals were additive. They are distinguished from each
other by their sparsity and strength. Following the biologi-
cally observed sparsity of activation, stimuli are considered
sparse as well. They punctually target a small fraction of
pools, and can be subthreshold or superthreshold. On the
other hand, the subnetwork bias is thought to target a larger
fraction of pools, to be uniform in strength and to be sub-
threshold. The biological counterpart of the stimulus current
is specific bottom-up input, which carries for example sen-
sory information. The biological counterpart of the bias input
is thought to be top-down input from higher representations,
which tends to be less specific and modulatory in nature. It is
hypothesized to carry back information about hypotheses
generated in higher areas and to bias the target area’s mode
of processing. The mutual interaction of brain areas via
bottom-up stimuli and top-down biases has been recently
suggested as a powerful framework for the computational
neuroscience of visual cognition �8,10,35�.

The situation of subnetwork biasing is schematically illus-
trated in Fig. 5, where, in addition to a constant global back-
ground current Ib, the subnetwork formed by pools 1−n re-
ceives a weak extra additive bias current Ibias. When the bias
is switched on, the subnetwork inside the dashed box be-
comes the “biased subnetwork.” In the following simulations
it is tested, if and how the presence of this subnetwork bias
can affect the stimulus response and representation selec-
tively for the biased subnetwork. One example of such an
influence of the bias is outlined in Fig. 5, where two pools p
and q, one inside and one outside the biased subnetwork, are
stimulated by identical currents Is,p and Is,q. In the illustrated
example, pool p of the biased subnetwork strongly responds
to specific stimulation Is,p �highlighted color�, whereas the
other pool q outside the subnetwork does not respond to its
stimulus Is,q. In this example, the subnetwork bias acts like a
gating variable that enables or prohibits response to stimula-
tion. Note that the definition of a biased subnetwork is dy-
namic, i.e., by sequentially applying bias currents to different
collections of pools, different subnetworks can be dynami-
cally biased �e.g., gated� one after the other as time proceeds.

In the following, a set of exemplifying simulations are
presented to demonstrate that such a gating property of a

subnetwork bias actually exists, and that it can highlight dif-
ferent response and representational properties of the biased
subnetwork, depending on the value of the global back-
ground current.

Figures 6–8 show the results of a set of exemplifying
simulations run for a model network with N=20 pools,
where ten pools receive a weak additive bias current Ibias.
Shown are the activities of the 20 pools over time �one row
for each pool�, encoded in the gray level. White means low
activity and black indicates high activity. Figure 6�a� dis-
plays, for comparison, the response of the network to two
small stimuli imposed sequentially on pools p=8 and q=12
�stimulus durations indicated by the black bars at the bottom
of Fig. 6�b��, when the network is in the distractible working

FIG. 5. Schematic outline of a subnetwork bias and its effect. In
addition to a constant global background current Ib, a part of the
whole network �pools 1−n in the illustration� receives a weak extra
biasing current Ibias. It is tested, how the presence of this subnet-
work bias modifies the response to stimulation of the subnetwork as
compared to the rest of the network. In the illustrated example, a
pool p of the biased subnetwork strongly responds to specific stimu-
lation Is,p �indicated by white color�, whereas another pool q outside
the subnetwork does not respond to a stimulus Is,q of the same
strength.

FIG. 6. Gray-level coded responses over time of a network of
N=20 pools for two sequential stimuli to pools 8 with Is=0.05 in
t� �200,800� and 12 with Is=0.05 in t� �1200,1800� �black bars at
bottom�; �a� With uniform global bias Ib=0.6: the second stimulus
destroys the persistent activity �same as Fig. 3�c�, for comparison�.
�b� As �a�, but pools 1–10 receive a weak extra bias Ibias=0.01. The
persistent activity is stabilized, leading to nondistractible working
memory. Other parameters are WS=−WL=1.25.
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memory regime �same simulation as in Fig. 3�c��. Pools 8
and 12 are chosen arbitrarily, the numbers are selected for
reasons of visualization only. Figure 6�b� shows the net-
work’s response under the same conditions, except that pools
1–10 received a weak bias signal Ibias=0.01, which was kept
constant over time and space. It can be seen that the bias,
although itself being clearly subthreshold in strength,
strongly stabilizes the working memory of pool 8, which
keeps its persistent activity despite the transient activation of
pool 12. As an effect of the bias, the memory has become
nondistractible while still being selective. In this example,
the subnetwork bias acts as to stabilize a memory content,
the network “concentrates” on a memory aspect.

The simulation runs displayed in Fig. 7 illustrate how the
effect of the subnetwork bias depends on the functional
mode of the whole network, adjusted by Ib. This time, four
pools were stimulated to test, whether the subnetwork bias
affects the representation of an individual stimulus or rather
the properties of the whole subnetwork �stimulus duration
indicated by the black bar in Fig. 7�c��. Again, pools 1–10
received a weak and uniform bias of Ibias=0.01. In Fig. 7�a�,
it can be seen that the bias signal selectively enables the
amplification and representation of the stimulated pools
within the biased subnetwork �pools 6 and 8�, whereas the
response of the other stimulated pools �pools 12 and 14� is

suppressed. Under this condition, the bias signal acts as an
attentional spotlight, where only representations within that
focus are enabled. In Fig. 7�b�, where the global background
current is slightly increased, the biased pools are again se-
lected to represent their inputs by superthreshold activity, but
now they are persistently active after stimulation. In this situ-
ation, the bias signal gates storage of a selected �attended�
part of the input stimuli into working memory. When the
global background signal is further increased, all stimulated
pools become active, but only the biased pools stay active
post stimulation and form memory. The context represented
by the bias signal determines working memory formation.

The simulations in Fig. 8 explore the dynamical proper-
ties of the gating mechanism implemented by the subnet-
work bias. Shown is the response of the same network as in
Fig. 7 �stimulus durations indicated by the black bar on the
bottom of Fig. 8�b��, where in the middle of the stimulus
presentation the bias flips from pools 1–10 to pools 11–20.
For the situation in Fig. 8�a�, first the biased stimuli are
selectively amplified, as observed before. When the bias
flips, the focus of amplification also changes: the now biased
subnetwork represents its stimuli, and the unbiased pools’
activities are suppressed. In this mode, the network imple-
ments a shifting focus of attention. Figure 8�b� shows the
response of the same network with a slightly increased glo-
bal background current. When the bias flips, the new high-
lighted pools are enabled, but the old ones are not disabled.
In this mode the network implements a trace of attention.
The last attended pools stay active and form a working
memory.

It is worth noting that in all cases the weak additive signal
imposes a strongly multiplicative effect on selective activa-
tion and memory. It acts as a powerful gating mechanism
which can enable or disable various different representa-

FIG. 7. Gray-level coded responses over time of a network of
N=20 pools where pools 6, 8, 12, 14 are stimulated by weak input
Is=0.025 in t� �200,800�. Pools 1–10 receive a weak extra bias of
Ibias=0.01. �a� For Ib=0.74, only stimuli that target the biased sub-
network evoke superthreshold response �attentional spotlight�. �b�
For Ib=0.78, stimuli that target the biased subnetwork are selec-
tively amplified and subsequently stored in working memory
�attention-gated working memory�. �c� For Ib=0.82, all stimuli are
represented, but only the ones in the biased subnetwork are stored
to working memory �context dependent working memory�. Other
parameters are WS=−WL=1.1.

FIG. 8. Gray-level coded responses over time of a network of
N=20 pools where pools 6, 8, 12, 14 are stimulated by weak input
Is=0.025 in t� �200,1400�, while the subnetwork bias flips: For t
�800, pools 1–10, for t�800 pools 11–20 receive a weak extra
bias of Ibias=0.01. �a� For Ib=0.74, stimuli in the biased subnetwork
are highlighted in a reversible way. �b� For Ib=0.78, the attentional
highlight is no longer reversible, however the last attended stimuli
are selectively stored in working memory. Other parameters are
WS=−WL=1.1.
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tional and memory properties of the biased subnetwork. This
effect can be used to dynamically enable or disable represen-
tations in arbitrary subnetworks, and as such can implement
an enormous flexibility of representation.

IV. SUMMARY AND CONCLUSIONS

We propose an important functional role for the global
spontaneous background activity in the framework of stimu-
lus representation, selective attention and working memory:
the dynamic tuning of the functional mode and the response
properties of neocortical areas and subnetworks by the level
of global spontaneous background input. By analyzing an
easily tractable model brain area that is prototypic for a wide
class of realistic mean-field formulations we demonstrate,
that the level of background input controls the stimulus
threshold, the ability to encode stable short-term memories,
the maximum number of coactive memories, and the ability
to spontaneously activate mental representations. Whereas
the configuration of synaptic weights determines the proper-
ties of internal representations, the background input can dy-
namically control the mode of their use, and thereby dynami-

cally tunes the area’s function. By means of these
mechanisms, the level of spontaneous activity might also un-
derly the control of alertness and arousal.

When the background signal is varied individually for
subnetworks by a weak bias, it acts as a strongly nonlinear
and flexible functional gating mechanism for that subnet-
work. Having in mind the functional tuning properties of a
background signal, the strongly nonlinear effect of such a
weak additive bias can be understood in a natural way: it
drives a subnetwork into a different functional regime. As
subnetwork biases can arise from pools of other brain areas,
they represent powerful and flexible candidates of context
signals. Cortical areas might generate a set of bias signals, by
which they selectively and dynamically highlight parts of
other brain areas. Such a multiareal system might bear the
potential for humanlike cognitive flexibility.
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